Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Isp7 is a novel regulator of amino acid uptake in the TOR signaling pathway.

Identifieur interne : 000E53 ( Main/Exploration ); précédent : 000E52; suivant : 000E54

Isp7 is a novel regulator of amino acid uptake in the TOR signaling pathway.

Auteurs : Dana Laor [Israël] ; Adiel Cohen ; Metsada Pasmanik-Chor ; Varda Oron-Karni ; Martin Kupiec ; Ronit Weisman

Source :

RBID : pubmed:24344203

Descripteurs français

English descriptors

Abstract

TOR proteins reside in two distinct complexes, TOR complexes 1 and 2 (TORC1 and TORC2), that are central for the regulation of cellular growth, proliferation, and survival. TOR is also the target for the immunosuppressive and anticancer drug rapamycin. In Schizosaccharomyces pombe, disruption of the TSC complex, mutations in which can lead to the tuberous sclerosis syndrome in humans, results in a rapamycin-sensitive phenotype under poor nitrogen conditions. We show here that the sensitivity to rapamycin is mediated via inhibition of TORC1 and suppressed by overexpression of isp7(+), a member of the family of 2-oxoglutarate-Fe(II)-dependent oxygenase genes. The transcript level of isp7(+) is negatively regulated by TORC1 but positively regulated by TORC2. Yet we find extensive similarity between the transcriptome of cells disrupted for isp7(+) and cells mutated in the catalytic subunit of TORC1. Moreover, Isp7 regulates amino acid permease expression in a fashion similar to that of TORC1 and opposite that of TORC2. Overexpression of isp7(+) induces TORC1-dependent phosphorylation of ribosomal protein Rps6 while inhibiting TORC2-dependent phosphorylation and activation of the AGC-like kinase Gad8. Taken together, our findings suggest a central role for Isp7 in amino acid homeostasis and the presence of isp7(+)-dependent regulatory loops that affect both TORC1 and TORC2.

DOI: 10.1128/MCB.01473-13
PubMed: 24344203
PubMed Central: PMC4023818


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Isp7 is a novel regulator of amino acid uptake in the TOR signaling pathway.</title>
<author>
<name sortKey="Laor, Dana" sort="Laor, Dana" uniqKey="Laor D" first="Dana" last="Laor">Dana Laor</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Adiel" sort="Cohen, Adiel" uniqKey="Cohen A" first="Adiel" last="Cohen">Adiel Cohen</name>
</author>
<author>
<name sortKey="Pasmanik Chor, Metsada" sort="Pasmanik Chor, Metsada" uniqKey="Pasmanik Chor M" first="Metsada" last="Pasmanik-Chor">Metsada Pasmanik-Chor</name>
</author>
<author>
<name sortKey="Oron Karni, Varda" sort="Oron Karni, Varda" uniqKey="Oron Karni V" first="Varda" last="Oron-Karni">Varda Oron-Karni</name>
</author>
<author>
<name sortKey="Kupiec, Martin" sort="Kupiec, Martin" uniqKey="Kupiec M" first="Martin" last="Kupiec">Martin Kupiec</name>
</author>
<author>
<name sortKey="Weisman, Ronit" sort="Weisman, Ronit" uniqKey="Weisman R" first="Ronit" last="Weisman">Ronit Weisman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24344203</idno>
<idno type="pmid">24344203</idno>
<idno type="doi">10.1128/MCB.01473-13</idno>
<idno type="pmc">PMC4023818</idno>
<idno type="wicri:Area/Main/Corpus">000F21</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F21</idno>
<idno type="wicri:Area/Main/Curation">000F21</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F21</idno>
<idno type="wicri:Area/Main/Exploration">000F21</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Isp7 is a novel regulator of amino acid uptake in the TOR signaling pathway.</title>
<author>
<name sortKey="Laor, Dana" sort="Laor, Dana" uniqKey="Laor D" first="Dana" last="Laor">Dana Laor</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.</nlm:affiliation>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv</wicri:regionArea>
<wicri:noRegion>Tel Aviv</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Adiel" sort="Cohen, Adiel" uniqKey="Cohen A" first="Adiel" last="Cohen">Adiel Cohen</name>
</author>
<author>
<name sortKey="Pasmanik Chor, Metsada" sort="Pasmanik Chor, Metsada" uniqKey="Pasmanik Chor M" first="Metsada" last="Pasmanik-Chor">Metsada Pasmanik-Chor</name>
</author>
<author>
<name sortKey="Oron Karni, Varda" sort="Oron Karni, Varda" uniqKey="Oron Karni V" first="Varda" last="Oron-Karni">Varda Oron-Karni</name>
</author>
<author>
<name sortKey="Kupiec, Martin" sort="Kupiec, Martin" uniqKey="Kupiec M" first="Martin" last="Kupiec">Martin Kupiec</name>
</author>
<author>
<name sortKey="Weisman, Ronit" sort="Weisman, Ronit" uniqKey="Weisman R" first="Ronit" last="Weisman">Ronit Weisman</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="eISSN">1098-5549</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Transport Systems (metabolism)</term>
<term>Amino Acids (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (MeSH)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Mutation (drug effects)</term>
<term>Mutation (genetics)</term>
<term>Phosphorylation (drug effects)</term>
<term>Phosphorylation (genetics)</term>
<term>Protein Kinases (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Schizosaccharomyces (drug effects)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Schizosaccharomyces pombe Proteins (genetics)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>Signal Transduction (genetics)</term>
<term>Sirolimus (pharmacology)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Transcriptome (drug effects)</term>
<term>Transcriptome (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (métabolisme)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Mutation (effets des médicaments et des substances chimiques)</term>
<term>Mutation (génétique)</term>
<term>Phosphorylation (effets des médicaments et des substances chimiques)</term>
<term>Phosphorylation (génétique)</term>
<term>Protein kinases (métabolisme)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Schizosaccharomyces pombe (génétique)</term>
<term>Protéines de Schizosaccharomyces pombe (métabolisme)</term>
<term>Schizosaccharomyces (effets des médicaments et des substances chimiques)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Systèmes de transport d'acides aminés (métabolisme)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transcriptome (effets des médicaments et des substances chimiques)</term>
<term>Transcriptome (génétique)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
<term>Transduction du signal (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acid Transport Systems</term>
<term>Amino Acids</term>
<term>Multiprotein Complexes</term>
<term>Protein Kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Schizosaccharomyces pombe Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 2</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Mutation</term>
<term>Phosphorylation</term>
<term>Schizosaccharomyces</term>
<term>Signal Transduction</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Mutation</term>
<term>Phosphorylation</term>
<term>Schizosaccharomyces</term>
<term>Transcriptome</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutation</term>
<term>Phosphorylation</term>
<term>Schizosaccharomyces</term>
<term>Signal Transduction</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mutation</term>
<term>Phosphorylation</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
<term>Transcriptome</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Complexes multiprotéiques</term>
<term>Protein kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
<term>Systèmes de transport d'acides aminés</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">TOR proteins reside in two distinct complexes, TOR complexes 1 and 2 (TORC1 and TORC2), that are central for the regulation of cellular growth, proliferation, and survival. TOR is also the target for the immunosuppressive and anticancer drug rapamycin. In Schizosaccharomyces pombe, disruption of the TSC complex, mutations in which can lead to the tuberous sclerosis syndrome in humans, results in a rapamycin-sensitive phenotype under poor nitrogen conditions. We show here that the sensitivity to rapamycin is mediated via inhibition of TORC1 and suppressed by overexpression of isp7(+), a member of the family of 2-oxoglutarate-Fe(II)-dependent oxygenase genes. The transcript level of isp7(+) is negatively regulated by TORC1 but positively regulated by TORC2. Yet we find extensive similarity between the transcriptome of cells disrupted for isp7(+) and cells mutated in the catalytic subunit of TORC1. Moreover, Isp7 regulates amino acid permease expression in a fashion similar to that of TORC1 and opposite that of TORC2. Overexpression of isp7(+) induces TORC1-dependent phosphorylation of ribosomal protein Rps6 while inhibiting TORC2-dependent phosphorylation and activation of the AGC-like kinase Gad8. Taken together, our findings suggest a central role for Isp7 in amino acid homeostasis and the presence of isp7(+)-dependent regulatory loops that affect both TORC1 and TORC2. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24344203</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5549</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Isp7 is a novel regulator of amino acid uptake in the TOR signaling pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>794-806</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/MCB.01473-13</ELocationID>
<Abstract>
<AbstractText>TOR proteins reside in two distinct complexes, TOR complexes 1 and 2 (TORC1 and TORC2), that are central for the regulation of cellular growth, proliferation, and survival. TOR is also the target for the immunosuppressive and anticancer drug rapamycin. In Schizosaccharomyces pombe, disruption of the TSC complex, mutations in which can lead to the tuberous sclerosis syndrome in humans, results in a rapamycin-sensitive phenotype under poor nitrogen conditions. We show here that the sensitivity to rapamycin is mediated via inhibition of TORC1 and suppressed by overexpression of isp7(+), a member of the family of 2-oxoglutarate-Fe(II)-dependent oxygenase genes. The transcript level of isp7(+) is negatively regulated by TORC1 but positively regulated by TORC2. Yet we find extensive similarity between the transcriptome of cells disrupted for isp7(+) and cells mutated in the catalytic subunit of TORC1. Moreover, Isp7 regulates amino acid permease expression in a fashion similar to that of TORC1 and opposite that of TORC2. Overexpression of isp7(+) induces TORC1-dependent phosphorylation of ribosomal protein Rps6 while inhibiting TORC2-dependent phosphorylation and activation of the AGC-like kinase Gad8. Taken together, our findings suggest a central role for Isp7 in amino acid homeostasis and the presence of isp7(+)-dependent regulatory loops that affect both TORC1 and TORC2. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Laor</LastName>
<ForeName>Dana</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cohen</LastName>
<ForeName>Adiel</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pasmanik-Chor</LastName>
<ForeName>Metsada</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oron-Karni</LastName>
<ForeName>Varda</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kupiec</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Weisman</LastName>
<ForeName>Ronit</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026905">Amino Acid Transport Systems</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C090610">isp7 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C523461">Tor1 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C476401">Gad8 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Mol Cell Biol. 2014 Apr;34(8):1535</RefSource>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D026905" MajorTopicYN="N">Amino Acid Transport Systems</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24344203</ArticleId>
<ArticleId IdType="pii">MCB.01473-13</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.01473-13</ArticleId>
<ArticleId IdType="pmc">PMC4023818</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mech Ageing Dev. 1980 Jan;12(1):47-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6986516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Jun 16;22(12):3073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2012 Aug;17(8):698-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22762302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3514-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Aug;29(16):4584-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19546237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Jul;30(13):3396-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20404084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2005 Oct 1;14(19):2851-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2005 Nov 14;24(50):7475-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16288294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2005 Oct 15;14 Spec No. 2:R251-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16244323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Nov 23;20(22):1975-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21035342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Mar 1;123(Pt 5):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Apr 26;15(8):702-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15854902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Apr 21;22(2):159-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Oct;183(2):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19620394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1983;101:167-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6310320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Dec;12(12):1357-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18076573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Mar;175(3):1153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Sep 1;126(Pt 17):3972-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23813957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2009 Dec;21(6):825-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19767189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Nov;58(4):1074-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2001 May;39(3):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11409178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Jul 26;341(6144):1236566</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23888043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 May 13;280(19):18717-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Dec 1;125(Pt 23):5840-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22976295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2013 Aug;12(4):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23551936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Nov;9(11):1263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17952063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Apr 15;125(Pt 8):1920-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22344254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2012;57:161-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22094422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Jul;161(3):1053-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Open. 2012 Sep 15;1(9):884-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23213482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21157483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(8):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(7):e11514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20634885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1999 Sep 20;146(6):1227-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10491387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):12706-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Oct;195(2):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23934889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 Sep;32(1):143-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12161753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2009 Dec;19(12):705-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19833516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 6;276(27):24736-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11335722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Biol. 2011 Nov;1(3):110007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2001;2(3):RESEARCH0007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11276424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Feb 1;7(3):358-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18235227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2007 Jul 15;6(14):1692-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2006 Dec;11(12):1367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1993 Jan 15;123(1):127-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8422996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Dec 22;420(1):39-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9450546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2008 May;279(5):441-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18219492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1994 Jul;26(1):31-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7954893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:795-823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Oct 12;338(6104):221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22923433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Mar 30;335(6076):1638-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22461615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2008 Mar;4(3):152-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18277970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(9):e25188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21949882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):1296-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Oct;179(20):6325-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 May;12(5):677-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17535257</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Israël</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Cohen, Adiel" sort="Cohen, Adiel" uniqKey="Cohen A" first="Adiel" last="Cohen">Adiel Cohen</name>
<name sortKey="Kupiec, Martin" sort="Kupiec, Martin" uniqKey="Kupiec M" first="Martin" last="Kupiec">Martin Kupiec</name>
<name sortKey="Oron Karni, Varda" sort="Oron Karni, Varda" uniqKey="Oron Karni V" first="Varda" last="Oron-Karni">Varda Oron-Karni</name>
<name sortKey="Pasmanik Chor, Metsada" sort="Pasmanik Chor, Metsada" uniqKey="Pasmanik Chor M" first="Metsada" last="Pasmanik-Chor">Metsada Pasmanik-Chor</name>
<name sortKey="Weisman, Ronit" sort="Weisman, Ronit" uniqKey="Weisman R" first="Ronit" last="Weisman">Ronit Weisman</name>
</noCountry>
<country name="Israël">
<noRegion>
<name sortKey="Laor, Dana" sort="Laor, Dana" uniqKey="Laor D" first="Dana" last="Laor">Dana Laor</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E53 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E53 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24344203
   |texte=   Isp7 is a novel regulator of amino acid uptake in the TOR signaling pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24344203" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020